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Summary 

Scattering and refraction of seismic waves can be exploited with empirical matched field 

processing of array observations to distinguish sources separated by much less than the classical 

resolution limit.  To describe this effect, we use the term “superresolution”, a term widely used 

in the optics and signal processing literature to denote systems that break the diffraction limit. 

We illustrate superresolution with Pn signals recorded by the ARCES array in northern Norway, 

using them to identify the origins with 98.2% accuracy of 549 explosions conducted by closely-

spaced mines in northwest Russia. The mines are observed at 340 - 410 kilometers range and are 

separated by as little as 3 kilometers.  When viewed from ARCES many are separated by just 

tenths of a degree in azimuth.  This classification performance results from an adaptation to 

transient seismic signals of techniques developed in underwater acoustics for localization of 

continuous sound sources.  Matched field processing is a potential competitor to frequency-

wavenumber and waveform correlation methods currently used for event detection, classification 

and location.  It operates by capturing the spatial structure of wavefields incident from a 

particular source in a series of narrow frequency bands.  In the rich seismic scattering 

environment, closely-spaced sources far from the observing array nonetheless produce distinct 

wavefield amplitude and phase patterns across the small array aperture.  With observations of 

repeating events, these patterns can be calibrated over a wide band of frequencies (e.g. 2.5 – 12.5 

Hertz) for use in a power estimation technique similar to frequency-wavenumber analysis.  The 

calibrations enable coherent processing at high frequencies at which wavefields normally are 

considered incoherent under a plane wave model. 

 



 

 



 

 

 

Introduction 

Permanent seismic arrays are part of the verification regime for nuclear test ban treaties, 

especially the Comprehensive Test Ban Treaty (CTBT).  Interest in smaller explosions is pushing 

the monitoring threshold to increasingly lower levels.  Since the number of events grows 

exponentially with decreases in magnitude, reliable methods of screening large numbers of small 

events are required if analysis resources are not to be overwhelmed.  With the capacity to 

estimate the direction and speed of observed waves and to detect small signals, arrays are 

essential assets in screening smaller events, especially explosions, by attributing them to known 

sources. 

However, the performance of seismic arrays in resolving sources is fundamentally limited 

by signal processing algorithms that employ plane-wave assumptions.  The propagation 

environment is so strongly heterogeneous, and scattering so pronounced, that the wavefields of 

regional events can be modeled as planar only over apertures of one to two wavelengths, 

constraining array geometries and limiting resolution (Mykkeltveit et al., 1983).  The 

performance of, specifically, frequency-wavenumber (FK) analysis (Capon, 1969), and 

beamforming (Johnson and Dudgeon, 1993) are limited by scattering effects.  FK analysis 

decomposes the incident wavefield in the frequency domain as a superposition of complex 

exponential plane waves and provides a map (spectrum) of power or energy incident on the array 

as a function of wavenumber.  It is the principal tool for ascertaining the directions and velocities 

of waves incident on a seismic array.  These parameters are obtained by extracting the vector 

wavenumber corresponding to peaks in the FK spectrum.  Since seismic arrays operate in an 



 

 

inhomogeneous propagation environment, peaks in the FK spectrum often are not well defined. 

The problem is acute at higher frequencies.   

Work on correlation detection and classification using array and network waveforms 

indicates that problems associated with scattering can be overcome by calibration of signal 

characteristics at the array aperture (Gibbons and Ringdal, 2006;  Gibbons, et al., 2007;  Harris, 

1991).  Waveform correlation methods obviate loss of coherence across an aperture by 

calibrating simultaneously the temporal and spatial structure of signals from specific repeating 

sources.  Discoveries that large subpopulations of explosions and earthquakes produce nearly 

identical repeating waveforms (Israelsson, 1990; Schaff and Richards, 2004;  Schaff and 

Waldhauser, 2005) motivate large-scale application of waveform correlation techniques for high 

precision location (see e.g. Waldhauser and Ellsworth, 2000;  Hauksson and Shearer, 2005), 

classification, and detection.   

However, the applicability of correlation methods is limited by variations in source 

characteristics (time history, mechanism and physical dimension) which change the observed 

waveform.  This problem motivates a search for invariants in the array waveform for a particular 

source, unaffected by source variations.  For sources that vary principally through changes in 

time history, the collection of Greens functions that characterize propagation from the source to 

the array stations are the relevant invariant.  At the array aperture, and in narrow frequency 

bands, collections of Greens functions determine the spatial structure of the signal. 

In the underwater sound community, matched field processing (Bucker, 1976;  Baggeroer 

et al., 1993) extends coherent array processing methods to more heterogeneous environments by 

characterizing the spatial structure of the signal under propagation conditions more general than 



 

 

the free-space assumption that leads to plane-wave structure.  The essence of matched field 

processing (MFP), as practiced in underwater sound, is to calculate the Greens functions 

describing propagation from source to array receivers using an accurate model of sound velocity 

in the oceanic waveguide.  MFP steers the array with the more accurate (non-planar) signal 

representation that results to focus incident signal energy emanating from a particular source 

point in a manner directly analogous to FK analysis and beamforming.  Recall that beamforming 

methods steer an array by applying time delays to align waveforms recorded by the array 

elements.  The time delays are projections of the slowness vector of a presumed incident plane 

wave onto the array sensor positions.  In the frequency domain this operation corresponds to 

multiplying the Fourier representations of the sensor waveforms by corresponding complex 

phase factors.  MFP, by contrast, steers the array explicitly in the frequency domain using the 

complex phase and amplitude factors obtained by solving the wave equation through the 

propagation model.  Because the sources of interest in underwater sound investigations usually 

are ships with rotating machinery, the signals often are narrowband or are comprised of a series 

of narrowband components.  Consequently, Greens functions typically are calculated for a single 

frequency by solving the Helmholtz equation (Baggeroer et al., 1993).  

MFP offers the prospect of much better detection and estimation performance than 

beamforming or FK analysis because the representation of the signal can be much more realistic.  

In the underwater sound problem, superior performance often is achieved by matched field 

methods, especially in deep water applications.  However, MFP has not found significant 

application in seismology due to the difficulty of developing realistic earth models to predict the 

structure of seismic wave fields at frequencies much above a tenth of a Hertz.   



 

 

An alternative to calculating the wavefield structure across an array is to estimate that 

structure directly from field calibration data (Fialkowski et al., 2000).  We refer to this strategy 

as empirical matched field processing.  Attempts at empirical MFP in underwater acoustics have 

achieved mixed success due to the dynamic nature of the medium and underwater sound sources.  

The principal issue is that stable estimates of the vector of amplitude-phase steering factors (i.e. 

the matching field, also called the steering vector) are difficult to obtain for non-stationary 

sources.  In the classic MFP approach, the steering vector is obtained as the principal eigenvector 

of a sample covariance matrix estimated from calibration data over the collection of array 

sensors.  Stationarity is assumed, and using ergodic properties, the sample covariance is averaged 

over a long time window to achieve statistical stability.  Typically, the continuous data are 

segmented into a series of contiguous “snapshots”, a sample covariance matrix for the array is 

estimated for each snapshot and the final estimate is the average of sample covariance matrices 

over all snapshots.  However, in the empirical MFP application, the calibration source moves to 

cover a source region of interest.  This motion limits the source dwell time in a particular 

location and the corresponding covariance integration time. 

Of course, the seismic medium is fixed as are many seismic sources, such as mines.  This 

fact provides the opportunity for empirical MFP to succeed in seismic applications by averaging 

covariance matrix estimates over ensembles of events in a particular source region. 

In this paper we describe an adaptation of empirical MFP to operate on transient seismic 

signals.  The application we present in detail most closely resembles FK analysis.  Consequently, 

we will test MFP and contrast its performance to that of FK analysis in the context of classifying 

events by their origins at a set of discrete locations.  Our principal result is that MFP performs 

much better as an event classifier than FK methods, even than FK methods with the sort of 



 

 

empirical corrections for refraction that are improving array operations (Schweitzer, 2001).  

Indeed, we show that we can reliably distinguish events from mines that are separated by much 

less than the classical (Rayleigh) resolution limit as viewed from a distant, regional array.  This 

performance is obtained without the sensitivity to source time history variations that would 

defeat waveform correlation classifiers. 

The principal hurdle to be overcome in adapting MFP to the seismic application is that 

matched field processing, as practiced in underwater sound, naturally applies to long 

observations of monochromatic sources.  The seismic signal, on the other hand, typically is 

relatively wideband and transient.  In our adaptation, the method uses repeating events at a 

known source to calibrate the complex spatial structure of the wavefield incident upon the array 

in a series of narrow frequency bands.  Decomposing the array signal into narrow frequency 

bands effectively separates spatial and temporal structures of the signal allowing independent 

exploitation of the spatial structure. 

The seismic waveform from a discrete source is a heavily multipathed signal with many 

phase arrivals representing distinct branches of propagation.  The seismic signal is profoundly 

non-stationary, as each phase has a distinct propagation path and scattering environment.  

Consequently, the spatial structure of the seismic waveform changes rapidly as phases come and 

go throughout the seismogram.  To simplify analysis in this first application of MFP to seismic 

data, we restrict our analysis to a single branch of propagation, the first-arriving Pn phase of 

regional observations.  However, in the conclusions, we will comment upon a general structure 

for MFP that extends to the entire waveform, which we expect will provide opportunities in 

detection. 



 

 

Since the Pn temporal window is too short to permit significant snapshot averaging with a 

single event observation, we obtain stable covariance matrix estimates by averaging the 

covariance over event ensembles,.  This approach leads us to reconsider the stochastic 

representation of seismic observations commonly assumed in FK analysis.  The FK spectrum, as 

classically defined, describes the power density in frequency-wavenumber space of a process 

which is a temporally stationary and spatially homogeneous random field (Capon, 1969).  

However, over time FK analysis has come to be applied to signals from individual events with 

very short temporal windows.  Consequently, the FK spectrum as commonly used, is the energy 

density spectrum (the squared magnitude of a Fourier transform) of a transient, implicitly 

deterministic signal.  In this paper, we introduce a probability model for the seismic waveform 

which is temporally non-stationary and spatial inhomogeneous, resulting from the convolution of 

transient random forces in the source region with deterministic, but unknown Greens functions.  

As a concrete example, we study the European arctic region (Figure 1) where the ARCES 

array, an important CTBT monitoring station, is 340-410 kilometers from two groups of mines in 

the Kola peninsula, Russia:  the Olenegorsk (O1-O5) and Khibiny (K1-K5) groups.  In 

monitoring for signals from distant nuclear events, the array observes thousands of mining 

explosions annually, which can be screened if attributed to their originating mines.  However, the 

array, with a 3 kilometer aperture, is too small to resolve many individual mines grouped within 

some mining regions.  Array resolution (by the Rayleigh criterion) is determined by the 

separation of half-power (3 dB) points of the main lobe of the array wavenumber response.  In 

Figure 1, the 3 dB points of the array response at 4, 8 and 12 Hz for Pn waves are projected onto 

the arrays geographic field of view.  The array has been steered to one particular mine (K2).  All 

ten mines fall within the 3 dB contours even at 12 Hz. Consequently, the array should not, and 



 

 

we will show, does not, reliably distinguish events among these mines using plane-wave 

methods applied to Pn observations.  However, we show that matched field processing methods 

do distinguish these events with a high degree of reliability.  This performance is an indication 

that the rich scattering environment imprints characteristic spatial structure on the signals that 

may be captured and exploited empirically. 

The paper is organized in three additional sections.  We devote the first to mathematical 

background describing our adaptation of matched field methods to process transient seismic 

signals.  The second section describes the data and analytical methods we use to test and contrast 

the performance of FK and MFP methods. We pay particular attention to the spatial 

characteristics of matched field calibrations and show how these differ from the plane wave 

model used in FK algorithms.  The matched field calibrations show interesting structure 

imprinted by propagation in a strongly heterogeneous medium.  The structure is responsible for 

the ability of matched field methods to distinguish closely-spaced sources at considerable range.  

The short third section presents classification results.  The last section discusses the implications 

of these results for extending coherent seismic array processing techniques to larger apertures 

and higher frequencies, and briefly describes methods for generalizing MFP to use the entire 

waveform. 



 

 

 

Mathematical Background 

In this study our objective is to identify the source of an event from waveforms observed 

at an array.  We define � to index the source among a set Θ of possible sources, in our case the 

10 mines of the Kola peninsula.   

Nomenclature for the observed signals 

We describe the wavefield incident upon an array aperture as ��,�=���,�+��,�, where 

the vector1 � indicates the position of a sensor observing the wavefield and � denotes time.  The 

function �� denotes the signal from an event at source � and � denotes additive noise, 

considered to be stationary and independent from the signal.  For simplicity we are considering a 

scalar wavefield (for example the vertical component of motion across the array aperture).  

Extension to vector (three-component) wavefields is straightforward.  Since we are considering 

arrays, the incident wavefield is measured on an aperture sampled at �� discrete locations �� 

;�=1,⋯,��.  It is convenient to collect the observed waveforms into a vector: 

��=��1,���2,�…����,�= ���+��= 
���1,����2,�…�����,�+��1,���2,�…����,� (1) 

 

For purposes of exposition, we make the assumption that each of the sources, �, is a point 

source, with a single repeating mechanism.  Under this assumption, ��, can be represented by 

the simple convolution integral [see, for example, Aki and Richards, 1980] 

                                                             
1 Note to the editor:  because we could not coax Word into implementing GRL standards for matrices and vectors, 
we are using italics to represent scalars, bold lower‐case characters to represent vectors and bold upper case 
characters to represent matrices. 



 

 

 

���= �� ���−� ��   (2) 
 

where �� is the vector of Greens functions describing propagation from the source to the 

observing sensors and the function � represents the forcing function of the source, which we also 

refer to as the source time history.  For more complex distributed sources or sources exhibiting 

multiple mechanisms an approximation involving multiple point sources is possible.  We 

comment upon the complexities that assumption entails in the conclusions. 

Matched field processing in underwater sound 

In underwater sound applications [Baggeroer, 1993] it is common to use a complex 

analytic signal representation [see e.g. Franks, 1981] and approximate the forcing function as a 

slowly-varying complex envelope � modulated by a complex exponential:  

 ��= �� �����  (3) 
 

In fact, the forcing function is the real part of the complex analytic function.  For simplicity of 

notation, we will work with the complex analytic representation of all signals throughout the 

discussion and treat the extraction of real components as implied.  The forcing function is 

considered to be stationary over the observation interval, which means that its statistics 

(moments) are constant.  Provided the envelope function is approximately constant over the 

duration of the Greens functions, the observed array signal has the form: 

��� ≈  �����������  (4) 
 



 

 

where ��� is the vector of Fourier transforms of the Greens functions.  Matched field 

processing performs a type of beamforming operation by steering the array with a vector � of 

complex weights: 

�� =  ����  (5) 
 

Here the superscript � denotes complex transpose.  In the absence of noise,  

�� =  ����� and the average power of the resulting beam is 

��2=  ������2��2.  (6) 
  
� is called the steering vector and usually is normalized to have unit length, i.e. ���=1.  The 

average power is maximized when the steering vector is proportional to ��.   

In the usual localization problem, source location is estimated by maximizing the average 

power of the beam over a range of possible origins �: 

max� ���2  =  max������2 =  max� � ��� �� 
 

 
�= �� � ��             ��=  �������������12 

(7) 

 

The major components of the process are (1) to compute the covariance matrix � of the received 

signals, (2) to compute steering vectors �� as normalized Greens function vectors over a range 

of possible source locations, and (3) to estimate the source location by maximizing the quadratic 

form (power)  � ��� �� over source location �.   

The covariance matrix � is the sum of the covariance matrix �� of the signal �� and the 

covariance matrix � of the noise �, due to the assumed independence of signal and noise.  In 

addition, ��  is stationary (implying � is constant) due to the assumptions of stationarity for �� 



 

 

and ��.  With the assumption of stationarity, ergodic properties are invoked to estimate �.  In 

the underwater sound problem, the available continuous stream of data is broken into (ideally 

many) segments, a sample covariance matrix is estimated from each segment, and the resulting 

sample matrices are averaged to provide a stable estimate of �.  The steering vectors usually are 

obtained numerically by solving the Helmholtz equation for all the possible source locations to 

the observing array through a model of the propagation medium.  

We seek to adapt this processing scheme to locate events with a seismic array.  Two 

factors bar simple emulation of the scheme.  The first is that models of the seismic propagation 

environment are inadequate for estimating the Greens functions, except at very low frequencies 

far below the band where we will demonstrate processing gain.  The second is that the seismic 

source, ��, though possibly still treatable as a random process, has a duration that is very short 

compared to the duration of the Greens functions observed at regional distances.  This is 

especially true for the smaller events that are of increasing importance in current monitoring 

applications.  Consequently the observations of a seismic signal are strongly non-stationary.  

Arguments based on ergodic notions cannot be invoked to obtain stable estimates of covariance 

matrices.  We discuss these two factors in turn. 

As mentioned in the introduction, one remedy for the problem of inadequate models is to 

obtain estimates of steering vectors empirically, i.e. from field calibration data [Fialkowski et al., 

2000].  In the underwater sound problem, this approach is motivated by the structure of the ideal 

covariance matrix �≈� � when noise is absent and when the array is observing a signal 

emanating from a known source �.  From equation 4: 

�� ≈  ��2���������  (8) 



 

 

we see that the covariance matrix has a single eigenvalue and corresponding eigenvector 

proportional to ��.  Consequently, a suitable steering vector can be obtained as the principal 

eigenvector of the covariance matrix estimated from ground-truth training data. 

However, in the seismic context, the second factor – the short source time history – 

prevents estimation of signal covariance by averaging over time.  Our solution to this problem 

involves substituting averages over ensembles of events for time averages.  In addition, the short 

time history complicates obtaining the separable signal model (equation 4) that underpins 

matched field processing.  Our solution is to break the signal into a large number of narrow 

frequency bands efficiently [see e.g. Portnoff, 1980], choose processing parameters that make 

signals in the narrow bands approximately independent, pursue matched field processing band by 

band and combine results incoherently across bands.   

Narrowband signal representation 

Figure 2 illustrates the type of seismic transient signals we consider, consisting of short 

forcing functions convolved with much longer Greens functions.  To adapt matched field 

processing to transients of this sort, we break the received signal into a large number of 

narrowband components ���, � an integer band index �∈����,⋯,����.  Each component is 

represented by the filtering operation: 

���= �� ℎ��−� ��  (9) 
  
We require that the bank of filters, represented by the collection of impulse responses ℎ��, 

allow perfect reconstruction of the signal from its narrowband components (a fidelity constraint): 

��= ����  (10) 
  



 

 

One filterbank that satisfies this requirement is obtained by frequency translations of an ideal 

lowpass filter with impulse response �� [Portnoff, 1980]: 

ℎ��= ��∆����� 
 

��=  1∆� �����∆�;      ∆�=2�∆� 
 
Φ� =    1         � ≤ ∆�2  0         � > ∆�2 

(11) 

 

Figure 3 depicts impulse responses and corresponding frequency responses ��� for the 

realizable digital filters we use to approximate this choice.  The filterbank divides the frequency 

axis into disjoint bands of width ∆� (∆�=2�∆�).  We choose the bandwidth ∆� to be small 

enough that the Fourier transform of the transient seismic source is approximately constant 

within any individual band.  In the time domain this assumption corresponds to a requirement 

that the impulse response of the filters be large compared to the duration of the source.  Our 

choice of bandwidth is ∆�= 40/128 = 0.3125  Hz.  The duration of the impulse response, then, 

is 3 to 4 seconds, which is usually long compared to the durations of the explosions in Figure 2.  

In the figure, the signals are observed at a distance of about one kilometer.  The source durations 

consequently are shorter than these observations.  

The narrowband signal components ��� are complex waveforms that consist of 

relatively slowly-varying complex envelope functions ��� modulated by a complex exponential 

function [Franks, 1981].  This fact is readily apparent by substituting the impulse response of 

equation 11 into equation 9:  

��� =  ��∆����� ��−� �−�∆��� ��  =  ��∆��� ���,  (12) 
 

which resembles equation 3. 



 

 

The signal component of the observations, the source time history and Greens functions 

also have representations in terms of narrowband complex envelopes, ����, ��� and ���� 

respectively.  Since the bands are disjoint, the convolution of equation 2 can be shown to obtain 

in each band individually: 

����= �� ��� ����−�    (13) 
 

To support matched field processing, we seek a signal representation analogous to 

equation 4.  This objective is aided by the short duration of the source.  Since the complex 

envelopes are band-limited, we can invoke the sampling theorem [Oppenheim and Schafer, 

1975] to represent the slowly-varying complex envelopes with discrete samples taken every ∆� 

seconds.  For example: 

���=  � = −∞∞��� ∆� �����−� ∆� 
 
   = ∆�� = −∞∞���  ��−� ∆� 

(14) 

 

Equation 14 represents the complex envelope as a series expansion in terms of sinc functions, 

where the coefficients in the expansion happen to be samples of the envelope  ��� =��� ∆�.  

This particular expansion has the desirable property that convolution among waveforms maps to 

convolution among the representative samples [Oppenheim and Schafer, 1975]: 

����  =� = −∞∞ ���  ����−�  
 

(15) 

Now, since the source time function has a short duration, it is approximately true that the 

envelope of the source is dominated by a single sample, chosen for convenience at �= 0: 

��� ≈ 0 ;    � ≠ 0  (16) 
 



 

 

Substituting 16 into 15: 

����   ≈   ��0 ����   (17) 
 

consequently: 

����  ≈  ��0 ����  (18) 
 

which is the result we seek.  We have expressed the signal in each narrow band as a separable 

product of the source time history and the Greens function.  This approximation allows us to 

propose a probability model for the observations in which the second moment is structured in a 

manner similar to the outer product of equation 8.  The principal difference between the seismic 

and underwater sound situations is that now the forcing functions appear as constants and the 

Greens functions are time-varying. 

Probability model for the data 

Assuming the source time histories are zero mean and normally distributed, the signals 

��� are zero-mean, non-stationary, Gaussian random processes, as are the complex envelopes 

���� [Van Trees, 1968].  The probability distributions of the complex envelopes are 

characterized by their second moments: 

�����1, �2  =  � ����1 �����2 ≈   ���0��∗0  ����1 �����2  (19) 
 

In contrast to the underwater sound case, these covariance functions depend on observation 

times, consistent with the non-stationary nature of the seismic signals.  However, we concern 

ourselves with just the first P arrival (Pn) in this paper, so the covariance matrix of interest is 

limited to the quantity of equation 19 sampled at the P arrival time, i.e. at  �1=�2=��.  We 



 

 

simplify the description of covariance by defining ���= ���0��∗0 and suppressing the 

dependence on ��: 

����  =  ������, �� ≈   ���  ��� ����  (20) 
 

The matched field processing algorithm is considerably simplified if the narrowband 

signal components can be considered statistically independent, i.e. if  ���≜��� ��2, then:   

����  ≈  ���  ��� ;          ���= ��2 ��� ����  (21) 
 

where ��� is the Kronecker delta function.  We have found this condition to obtain 

approximately for mining explosions where there is significant variation in the source time 

history, as we will demonstrate in the next section.  We summarize the observed data with the 

vector 

�=  ����� �����+1…  �����  (23) 
 

which is understood to consist of the array complex envelope functions in the bands ranging 

from ����  to ���� sampled at time �=��. The probability density function for these data we 

take to be the complex multivariate normal density 

��= � =�����������−1�−�����−1 ��  (24) 
where 

��=  ��2 ��� ���� +  ��  (25) 
 

�� is the covariance contributed by the ambient noise, still considered to be stationary.  The 

assumption of independence among bands leads to a joint pdf which is the product of individual 

densities for the observations in each band. 



 

 

Matched field processing algorithm 

We use a matched field processing algorithm developed under simplifying assumptions 

of a high signal-to-noise ratio and noise which is statistically independent among frequency 

bands and channels of the array.  The problem is to determine which of several possible (equally-

likely) sources � ∈ Θ is responsible for the observed signals �.  If there are � possible sources, 

this problem can be treated as an M-ary hypothesis test and is solved by maximizing the log 

likelihood function [Van Trees, 1968]: 

����=  −� = �������������+�����−1 ��  (26) 
 

over source � .  The solution to this problem is to choose the � which maximizes the energy in 

the Pn window of a beam similar to the average power expressed in equation 7: 

  �∗= max�� = ������������ ����� ��� 
 

    ���=  ������� ���12 
(27) 

 

We normalize the statistic in (27) to range between 0 and 1, by dividing the beam energy by the 

total energy incident on the array aperture: 

� = ������������ ����� ���� = ����������� ��  (28) 
 

The modified statistic represents the energy in the Pn window  representable or “captured” by the 

matched field steering vectors.  We refer to (28) as the energy capture of the algorithm. 

Calibration 



 

 

The matched field processing algorithm of equation (27) requires knowledge of the 

vector of Greens functions  ��� in each frequency band for each source � at least within a 

multiplicative constant.  As in the underwater sound case, an estimate of  ��� can be obtained 

empirically from an estimate of the signal covariance ���.  This we obtain in practice from an 

estimate of �� (equation 25) made from an ensemble of events from a particular source as 

described in the next section.  The events are chosen to have sufficient high signal-to-noise ratio 

that the noise contribution �� in equation 25 is negligible.  Then an estimate of  ��� is obtained 

as the principal eigenvector of ��. 

 

Data and Analytical Methods 

As described in the introduction, we test the concepts of matched field processing and 

contrast it with conventional FK analysis using ARCES array observations of explosions in the 

Kola Peninsula region of northwest Russia (Figure 1).  For our analysis, we selected 549 events 

attributed to the specific mines shown in Table 1 by reports from the mine operators, validated 

with data from stations (APA, LVZ) local to the mines.  For each event, we acquired 200 

seconds of waveform data (Figure 2) for the ��=17 ARCES elements comprising the center and 

the outer two rings of the ARCES array (aperture approximately 3 kilometers), and manually 

picked the Pn onsets.  We note that at this range, the Pn phase is well separated from Pg and the 

later phases, so that we can consider processing Pn as a temporally isolated branch of 

propagation, even in the narrow frequency bands that we choose for our analysis. 

Estimation of covariance matrices 



 

 

The principal data reduction we performed was to compute estimates of covariance 

matrices �� in each band � �  ����,⋯, ����.  There were two types of covariance matrix 

estimates:  those for single events and ensemble averages (Table 1, Figure 4) for each mine.  To 

estimate these covariance matrices, we assembled the event observations ���;    �=1,⋯,�� from 

a particular source �, aligned the waveforms to the first P arrival, filtered them into their 

constituent narrow bands �����, then computed 

��� = 1�∆  �=0�∆−1����0+�∆����0+�∆�  (29) 
 

for the individual covariance matrices, where �0 was the pick time, ∆=0.125 seconds, �∆=32, 

and 

 ��=   1�� �=1����������  (30) 
 

for the ensemble averages.  We performed averaging over 4-second windows of the complex 

envelopes in equation 29, to ensure that the sampling of Pn correlation characteristics was 

representative of the bulk of Pn energy.  The arrival time of the energy varies from event to 

event.  For the purposes of this investigation ��� ≈  ����������� since the window 

selected contained only the Pn phase in all cases (Figure 4).  The individual event contributions 

to the ensemble average in equation 30 were normalized by the total energy to prevent a few 

larger events from dominating the average.  We also required a signal-to-noise ratio greater than 

2 in each band, so that the ensemble covariance would be dominated by signal characteristics, 

i.e. �� ≈ ���. 

The frequency bands also were selected for good signal-to-noise ratio over the collection 

of 549 events.  The processing band ranged from 2.5 Hz ( ���� = 8)  to 12.5 Hz (���� = 40), 



 

 

with the width of the bands chosen to be ∆� = 0.3125 Hz.  Consequently, the data were 

processed in 33 bands as shown in Figure 3. 

Assumption of independence among frequency bands 

We performed a separate calculation of the covariance among signals in different 

frequency bands as a check of assumed independence.  Equations 29 and 30 were modified to 

correlate  ���� and  ����, envelopes in different frequency bands, to estimate ���� for �,� 

∈[8,⋯,40].   We then constructed the matrix 

 

� =  �8 8⋯�8 40…⋱…�40 8⋯�40 40 = � � ��  (31) 
 

and normalized the rows and columns of the matrix by the square root of the product of the 

diagonal elements they contain.  This normalization leaves a diagonal consisting of all ones;  the 

off-diagonal elements represent the coherences between the signals observed by individual array 

sensors in frequency bands � and �.  The resulting matrix is shown in Figure 5 and is 

approximately block diagonal, where each block is a 17×17 submatrix representing the 

coherence among the ��=17 ARCES elements used in the calculation.  Since the off-diagonal 

elements are complex, the magnitude of the elements is rendered as an image, with bright pixels 

representing high coherence (approaching 1) and dark pixels representing low coherence 

(approaching 0).  The low coherence indicated by the off-diagonal blocks suggests that the 

frequency bands are approximately uncorrelated, supporting the approximation of equation 21. 

Characteristics of steering vectors 



 

 

The successful and routine use of FK analysis motivates a comparison of matched field 

processing to FK methods.  The frequency-wavenumber spectrum has the same mathematical 

structure as the matched field processing statistic, but with steering vectors defined by a plane 

wave model (see e.g. Aki and Richards, 1980, section 11.4).  The FK spectrum ��,� maps 

power (or energy) incident upon an array as a function of frequency � and wavenumber �, and 

this spectrum is estimated by: 

��,� = ��� �� �� (32) 
 

where �� is the estimated spectral covariance matrix of the observations evaluated at frequency 

�, and the steering vectors have the form: 

��=  1�����∙�1…���∙��� (33) 

The FK equivalent of equation 27 is: 

  �∗= max�� = �����������∆��� �������∆���  (34) 
 

where �� is the slowness vector defined by the nominal Pn velocity in the region and the great 

circle back-azimuth from the array to the source �.  We note that the statistic in (34) is a 

wideband extension of the single-frequency FK definition that assumes uncorrelated frequency 

components and is frequently used in practical array operations [Kvaerna and Doornbos, 1986; 

Kennett, 2002]. 



 

 

It is common to calibrate FK analysis by introducing corrections for vector slowness 

estimated from (34) over the observation band using collections of ground truth events (see e.g. 

Schweitzer, 2001;  Gibbons et al., 2009).  Gibbons et al. (2009) in particular demonstrate that 

calibrations of refraction can improve the ability of small-aperture arrays to distinguish events 

from closely-spaced mines.   A fair comparison of FK analysis and matched field processing 

should include FK slowness corrections.  We estimate slowness corrections in our analysis by 

selecting the slowness to maximize the FK energy estimate for a particular source using the 

ensemble covariance matrices estimated for that source: 

��∗= max�� = �������������� ��� (35) 

Subsequently we use s�∗ instead of the slowness vector predicted by the great circle path to 

generate plane wave steering vectors, when we speak of calibrated FK analysis. 

It is instructive to visualize the plane wave steering vector and its empirical matched field 

counterparts to understand why matched field processing performs so well.  It is reasonable to 

expect that, since FK analysis generally is successful at low frequencies, the empirically-derived 

steering vectors should reproduce their plane-wave counterparts in the frequency band where 

arrays are considered coherent.  This expectation is largely fulfilled, as we will show.  However, 

the empirical steering vectors depart dramatically from their plane wave counterparts as 

frequency increases. 

Figure 6 introduces our visualization approach.  The �� elements of the steering vectors 

are complex phasors characterized by a magnitude and a phase.  In the figure, each phasor is 

rendered as a circular symbol at the map position of the corresponding physical array element, 

with symbol size proportional to the phasor magnitude and color keyed to the phase.  In the plane 



 

 

wave model, the phasors have uniform magnitude and the phase is obtained by projecting the 

vector representing the array element location onto the slowness vector (Figure 6 left).  In the 

plane wave case phase is constant in planes perpendicular to the direction of wave travel and the 

phasor magnitude is constant (Figure 6 right). 

Figure 7 presents a panel of plane-wave steering vectors rendered as described in Figure 

6.  This panel compares the steering vectors for each of the ten mines in each of seven different 

frequency bands (� ∈ [10, 15, 20, 25, 30, 35, 40] ), which are the bands highlighted in blue in 

Figure 3.  The steering vectors have been optimized by the slowness calibration of equation 35. 

The principal lesson of Figure 7 is that, even with slowness corrections, the steering vectors do 

not differ very much among the mines.  Variation among the steering vectors is negligible for the 

lowest frequency (3.125 Hz) displayed, but does not increase very much as frequency increases 

even to 12.5 Hz.  At 12.5 Hz there is noticeable variation between the Olenegorsk and Khibiny 

groups but minor variations among individual mines within those two groups.  This observation 

suggests that FK analysis of the Pn phase, even with calibrations, will not provide a reliable 

means to distinguish events from these ten sources. 

The empirical steering vectors are estimated as the principal eigenvectors of ensemble 

covariance matrices (equations 29 and 30 ) for each of the mines.  This calibration approach 

assumes that the eigenspectra of the covariance matrices are dominated by a single eigenvalue, 

so that the covariance matrix is well approximated by the outer product of the associated 

principal eigenvector with itself (equation 19).  Figure 8 shows the proportion of energy in the 

eigenspectrum concentrated in the largest eigenvalue for each of the ten mines as a function of 

frequency band.  Below 7 or 8 Hz a single eigenvalue does dominate.  For the Olenegorsk group 

of mines, the largest eigenvalue accounts for at least 60% of the energy even to 12.5 Hz.  The 



 

 

Khibiny group shows a different behavior, with a sharp drop in concentration of energy in the 

largest eigenvalue above 7 Hz.  But the largest eigenvalue still accounts for at least 40% of the 

energy at 12.5 Hz.  The drop in concentration of the eigenspectrum energy is evidence of some 

heterogeneity in the sources (mines) of the Khibiny group (i.e. they do not behave as simple 

point sources).   The Kirovsk and Rasvumchorr explosions, for example, are designed to drop the 

roofs of mining drifts with fans of charges emplaced in a series of holes radiating from the drifts 

like spokes in a wheel.  Several such fans may be detonated within a few tenths of a second. 

Steering vectors comparable to those displayed in Figure 7, but obtained empirically from 

the estimated ensemble covariance matrices are displayed in Figure 9.  Two features of these 

data are notable:  there is a great deal more variability among the empirical steering vectors than 

among their theoretical plane wave counterparts and the amplitudes of elements comprising the 

vectors are significantly non-uniform.  At 3.125 Hz, the steering vectors are largely 

homogeneous among all of the mines, indicating a desirable reproducibility of our data reduction 

techniques and the consistency one would anticipate at low frequencies where the effects of 

scattering are less pronounced.  As the frequency increases, the variation among the mines 

increases dramatically.  In the next two higher bands displayed (4.6875 and 6.25 Hz) the two 

mine groups are individually homogenous, but variations between groups are significant.  As the 

frequency increases above 7 Hz, variations among the mines within each group become 

increasingly significant until the phase patterns appear almost random at 12.5 Hz. The high 

degree of heterogeneity in these steering vectors suggests that empirical matched field processing 

should perform well to resolve events originating at these mines.  The degree of variation  in 

magnitude from sensor to sensor is notable, suggesting focusing effects in wave propagation. 



 

 

One way to determine whether empirical steering vectors reproduce plane wave steering 

vectors is to examine the inner product between empirical and plane wave (theoretical) vectors: 

 �������������ℎ��������� (36) 
 

Since both empirical and theoretical steering vectors have been normalized to unit length, the 

magnitude of the inner product must range between 0 and 1, approaching 1 if the vectors are 

similar.  Figure 10 shows this comparison for the ten mines, with generally high similarity 

between theoretical and empirical steering vectors below 7 Hz, and low similarity above that 

frequency.  The two groups of mines behave quite differently.  The variability in the inner 

product is remarkably small among the Khibiny mines below 7 Hz but large among the 

Olenegorsk group.  In general, however, the calibration process for steering vectors does tend to 

reproduce plane wave vectors at low frequencies where regional arrays are considered to operate 

coherently and where FK analysis typically is employed successfully. 

The disparities among steering vectors shown in Figures 7 and 9 can be made more 

apparent by examining the relative amplitude and phase for each array element from mine to 

mine.  In Figures 11 and 12, we select one mine (K2:  Rasvumchorr) as a reference and display 

the elements ���,  �=1,⋯, �� of steering vectors normalized by the corresponding element for 

the K2 vector, i.e. 

���/��2� (37) 
 

Figure 11 shows the normalized plane wave steering vectors and Figure 12 the normalized 

empirical steering vectors.  Note that in both figures the normalized steering vectors for 



 

 

Rasvumchorr have elements with uniform magnitude and zero phase, as the reference should.  In 

Figure 11, steering vectors for the remainder of the mines show small phase variations at low 

frequencies that increase steadily as frequency increases.  The Khibiny mines are all very similar 

to Rasvumchorr.  In Figure 12, the variations are much more dramatic and include big variations 

in amplitude as well as phase.  As in Figure 11, the variations increase with increasing 

frequency.  However, at the highest frequencies, the Khibiny mines show as much variation as 

the Olenegorsk mines. 

We interpret these results as the effects of scattering, which become more pronounced as 

frequency increases.  We speculate that the scale length of heterogeneities affecting scattering 

becomes significantly less than the separations between mines in the two groups at the higher 

frequencies analyzed.  Ultimately variations between mines within one of the two groups can 

become as large as variations between (the more distant) groups. 

It is instructive to examine another measure of geographic resolution offered by the 

processing techniques.  The ambiguity function [Baggeroer et al. 1993] 

��1, �2= ��1���2�  (38) 
 

measures the degree of similarity between steering vectors.  For perfectly resolved sources ��1, 

�2= ��1�2.  To obtain a sense of geographic resolution, a reference point can be selected, for 

example �1= �∗ and the ambiguity function can be mapped against other geographic points �2.  

The theoretical ambiguity function assuming plane wave propagation is contoured at three 

different frequencies in Figure 1 using Rasvumchorr as the reference.  Figure 13 plots the 

ambiguity functions evaluated at each of the ten mines again using Rasvumchorr as the 



 

 

reference.  The value of the ambiguity function is represented as a symbol at the geographic 

locations of the mines:  symbol size is proportional to the ambiguity value.  A matrix of six cases 

is shown:  2 different frequencies (5 and 10 Hz) and three different types of steering vectors.  

The first type (left) is the theoretical plane wave steering vector assuming slowness vectors 

determined from the great circle path from mine to the array and a nominal Pn velocity (8.0 

km/sec) for the region.  The second type (middle) is the plane wave steering vector with 

slowness corrections calibrated by the method of equation 35.  The third type (right) is the 

matched field steering vector.  At 5 Hz, only the matched field steering vectors appear to reject 

the Olenegorsk mines very well and none of the methods provides very unambiguous separation 

of Rasvumchorr from the other Khibiny mines.  At 10 Hz, only the matched field method clearly 

rejects the other Khibiny mines. 



 

 

 

Event classification results 

Our principal objective is to use matched field processing (equation 27) to determine the 

origins of events from the Olenegorsk and Khibiny mining regions using observations of the Pn 

phase with the ARCES array.  We contrast the performance of this method with FK analysis 

(equation 35) with and without slowness corrections.  For the two methods that require 

calibrations, we used a cross validation approach to avoid problems of circularity.  We held one 

of the 549 events out, calibrated steering vectors using the remaining 548 events then used the 

calibrated steering vectors to classify the one reserved event.  We iterated this procedure 549 

times using each event in turn as the reserved event. 

It is instructive to examine histograms of the classification statistics, i.e. the matched field 

or FK energy computed in the 33 bands ranging from 2.5 to 12.5 Hz.  These statistics are 

normalized in the manner of equation 28 to represent energy capture for each of the processing 

methods.  Figure 14 summarizes these histograms for the 52 explosions of the Olenegorsk mine 

(O2).   The figure shows 10 histograms for each of the three processing options.  Each of the 10 

histograms corresponds to a particular hypothesis about the mine of origin.  The leftmost column 

of the figure shows the energy capture distributions for FK analysis using plane wave steering 

vectors constructed from theoretical (great circle) back azimuths.  There is very little difference 

among the distributions, which are clustered around 0.2-0.3 energy capture, except that the 

distributions for the 5 Olenegorsk mine hypotheses are shifted to slightly higher values than 

those of the corresponding 5 Khibiny hypotheses. 



 

 

The center column of the figure presents the results for the FK algorithm with slowness 

corrections.  The corrections clearly improve the separation of the distributions under the 

Olenegorsk hypotheses from the Khibiny distributions.  However, the distribution under the O2 

hypothesis is not significantly distinct from the O1 and O3-O5 distributions. 

The matched field processing results are summarized in the third column.  With matched 

field calibrations the separation of the O2 distribution from the other distributions is dramatic.   

The results of classifying the 549 events from all mines are summarized in Figure 15.  

This figure has three parts, one for each processing approach.  The top part summarizes the 

classification results for the FK method with no corrections.  It consists of 10 histograms, one 

stacked behind the other showing the frequency of classification for the events of each mine 

under each of the 10 hypotheses about event origin.  A perfect result would show a diagonal of 

filled bins containing all of the events correctly attributed to their origins.  For this method 

(labeled “theoretical plane wave”), the majority of events are incorrectly assigned to one mine, 

the Rasvumchorr mine (K2).  We attribute this behavior to the fact that observed Pn 

backazimuths are biased clockwise (to the south) and the K2 mine is the southernmost of all the 

mines.  Consequently, the steering vectors for this mine present the best fit to the refracted 

wavefields.   

The middle part (labeled “empirical plane wave”) summarizes results for the FK method 

with slowness corrections.  The slowness corrections presumably remove gross biases in azimuth 

and the classification performance is significantly better.  Few errors are made between the two 

mining groups, which is consistent with other results obtained with wideband FK analysis 

[Gibbons et al., 2009].  Within the Olenegorsk group, classification results are correct more often 



 

 

than not.  But classification performance for mines within the more distant Khibiny group is not 

good, representing a more nearly uniform (random) assignment of events to originating mines.  

We interpret this result to indicate that the separations of these mines are below the resolution 

limit of the array, even at 12.5 Hz, and that coherent processing based on a plane wave model is 

not possible in the higher frequency bands. 

The bottom part (labeled “matched field”) summarizes the matched field processing 

classification results.  Matched field processing identifies the sources of the explosions with a 

high degree of reliability (98.2%, 539 of 549 events correctly identified). 

Conclusions 

Matched field processing with empirically-calibrated steering vectors reliably identifies 

the origins of explosions in the Khibiny and Olenegorsk mines using just observations of the Pn 

phase made with the ARCES array.  This result is remarkable because conventional 

considerations of array resolution (Rayleigh limit) suggest that poor performance should be 

expected.  Indeed our comparison with a conventional broadband FK algorithm, even with 

slowness corrections, indicates that algorithms that rely upon a plane wave model perform in a 

manner consistent with expectations.  The matched field results appear to be a consequence of 

the rich scattering environment for wave propagation in the crust and upper mantle.  The mines 

are too closely spaced (just tenths of a degree apart in azimuth) to be resolved under free space 

propagation conditions, which would offer only direct-path propagation.  The highly 

heterogeneous environment creates multipath propagation, which produces an apparently 

disorganized phase and amplitude structure across the array aperture (Figures 9 and 12) that may 

be calibrated with observations of previously-recorded events.  This structure appears to be 



 

 

repeatable from event to event, allowing an algorithm which exploits that structure to identify 

closely-spaced sources reliably.   

We speculate that the explosions in the Kola peninsula may illuminate a field of scatters 

over a much larger angle, when observed by ARCES, than that subtended by the mining region 

itself (~ 5 degrees), and perhaps larger than the classical resolution limit.  We suggest that 

explosions at the 10 mines illuminate the field of scatterers in unique patterns, depending on their 

positions within that field, and that the seismic wavefields scattered toward the array across the 

broad scattering aperture differ significantly among the mines.  This interpretation is consistent 

with techniques in cellular telephony widely used to increase communication bandwidth with 

antenna arrays in a rich scattering environment [Foschini and Gans, 1998;  Simon et al., 2001; 

Moustakas et al., 2000].  Empirical matched field calibration captures the detail of refracted and 

scattered wavefield structure across the   array aperture, leading to superior performance in 

distinguishing the sources.  Since mining explosions are distributed (ripple-fired) sources, source 

radiation pattern effects also may make a contribution to distinguishing the fields as energy is 

directed outward in a unique azimuthal pattern from each mine. 

Wideband matched field processing processes array observations incoherently across a 

large number of narrow frequency bands, which confers a degree of immunity to variations in 

source time history.  Waveform correlation methods, a potential competing solution for the kind 

of classification problem we have discussed, are, by contrast, more sensitive to variations in the 

source signal.  We make this statement based upon experience with both algorithms, though a 

formal study needs to be done to quantify these effects. 



 

 

However, like waveform correlation methods [e.g. Gibbons and Ringdal, 2006], matched 

field processing calibrates the spatial structure of a signal across the observing aperture, 

permitting coherent processing at frequencies for which the signal is considered incoherent under 

a plane wave model.  This observation suggests that there may be no limit to the size of the 

aperture over which coherent processing may be attempted.  Observing networks that were 

deployed with only incoherent processing methods in mind might now be used in a coherent 

processing framework. 

The basic technique we describe in this paper can be extended in several useful ways.  

The assumption that the source must be idealized as a single point force can be relaxed to allow 

more heterogeneous sources modeled by a number of independent point sources.  We had a 

suggestion in our data (Figure 8) that this extension is desirable.  The concentration of 

eigenspectrum energy in the top eigenvalue declines at high frequencies for the mines of the 

Khibiny group.  The SNR of events is high for this group above 7-8 Hz, suggesting that some 

factor other than poor SNR is at play.  This factor could be source heterogeneity.  Changing the 

signal model to acknowledge source heterogeneity requires the signal covariance matrices ���� 

to have ranks greater than one.  The matched field processing approach can be modified to use a 

collection of steering vectors extracted as the now multiple principal eigenvectors of the 

ensemble covariance matrix in the calibration step.  The algorithm must be modified to 

maximize power over a subspace of steering vectors spanned by the collection of principal 

eigenvectors.  This observation provides additional justification for the use of event ensembles 

for estimating covariance matrices, as the rank of an estimated matrix cannot exceed the number 

of events used in the estimate.  The number of effective point sources comprising a 



 

 

heterogeneous source can be discovered through eigendecomposition of an ensemble covariance 

matrix.   

The other principal extension that would be useful is to modify matched field processing 

to use more of the waveform than just the first arriving P phase, extending perhaps to the entire 

seismogram.  This modification would entail use of the entire covariance function and its 

eigendecomposition in a Kahunen-Loeve (KL) expansion [Van Trees, 1968] to develop matching 

fields that capture and use the time evolution of spatial structure.  The narrowband 

decomposition still would be required to suppress the effects of a short, variable source time 

history, and a KL expansion would be required in each frequency band.  While complicated, this 

approach is feasible with modern computing capabilities. 
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Figure Legends 

Figure 1  The mines of the Khibiny and Olenegorsk regions are too close for explosions to be 

attributed to specific mines on the basis of wavenumber (FK) spectrum direction estimates made 

from ARCES array (upper left) observations of Pn waves (Figure 2). ARCES resolution is 

indicated on the map at lower left, which shows the half-power contours of the array response at 

three frequencies when the array is steered to the Rasvumchorr mine (K2).   

Figure 2  Recordings of 7 explosions conducted at the Rasvumchorr mine (see Figure 1) made at 

an in-mine station (upper left) and the ARCES array center element (bottom, upper right) 

demonstrate that the regional seismic signal is the convolution of a short excitation and a 

prolonged Green’s function.  The great variability of the signals seen near the source and the 

common path to the observing station suggest the array signal can be modeled as the convolution 

of brief stochastic forcing functions with long-duration, deterministic Green’s functions.  

Consequently, the spatial structure of the signal is deterministic (but unknown), even if the time 

history is a random process. 

Figure 3  The real parts of the first 10 impulse responses (top) and amplitude frequency 

responses (bottom) for the bank of narrowband filters defined in equation (11).  Seven individual 

bands are highlighted in blue and the sum of 33 bands in the range 2.5-12.5 Hz is shown in red. 

Figure 4  Signals recorded by the ARCES station ARA0 (the array center element) for the 

ensemble of events used to calibrate the Norpakh mine (K5).  Note the first-arriving P waves 

(see inset) show a high degree of time history variation. 

Figure 5  This figure shows the matrix of inter-element and inter-band coherence of the Pn phase 

for the 17-element subarray of the ARCES shown in Figure 1.  The coherence has been 



 

 

computed here for explosions at the Kirovsk mine, using 114 events.  The image consists of 33 

×33 blocks each representing a distinct pairing of 33 different frequency bands (the labels on the 

axes represent frequency).  Each block is a 17 ×17 matrix of correlations among the elements of 

the ARCES array.  The fact that the matrix is approximately block diagonal is evidence that the 

33 frequency bands chosen for our analysis are approximately uncorrelated. 

 Figure 6  This figure introduces a method for visualizing steering vectors that is used 

subsequently in Figures 7, 9, 11 and 12.  The steering vector (right) can be visualized by plotting 

a symbol at each array sensor location.  The size of the symbol is proportional to the magnitude 

of the steering vector element corresponding to the sensor.  The color of the symbol encodes the 

phase.  The example shown here is for a plane wave incident on the array from the southeast;  the 

amplitudes are uniform and the phase increases linearly with distance along the direction of wave 

travel.  The phase is calculated from the geometry shown at left:  the phase is proportional to the 

vector offset of a sensor projected onto the slowness vector defining the direction and velocity of 

travel. 

Figure 7   Plane wave steering vectors in 7 frequency bands (highlighted in blue in Figure 3) for 

all 10 mines are rendered here with the method described in Figure 6, and show that theoretical 

plane wave steering vectors vary little among the mines.  The slowness for each mine has been 

optimized to fit the data (maximize the ensemble FK spectrum) over the 2.5-12.5 Hz frequency 

band (equation 36). 

Figure 8  At all frequencies, the ensemble covariance matrices have a large fraction of their 

eigenspectrum energy concentrated in a single eigenvalue. The two plots show the fraction of 

eigenspectrum energy present in the largest eigenvalue as a function of frequency for the 5 



 

 

Khibiny mines (top) and the 5 Olenegorsk mines (bottom).  The light lines depict the 

concentration of eigenspectrum energy for individual mines and the dark lines depict mining 

group averages. 

Figure 9   Empirical (matched field) steering vectors are depicted here in the same manner as in 

the Figure 7, allowing direct comparison.  Note the variability among the mines (vertical 

direction) which increases at high frequencies.  Steering vectors diverge substantially above 8 

Hz. 

Figure 10  Plots of the inner products (equation 37) of theoretical and empirical steering vectors 

show that, at low frequencies, the matched field calibration process largely reproduces the 

theoretical plane wave steering vectors.  At high frequencies deviation increases demonstrating 

the breakdown of the plane wave model.  The inner products for individual mines are shown as 

light lines;  averages for each mining group are depicted with heavy lines.  Mines of the Khibiny 

and Olenegorsk groups behave differently, but both show poor matches between measured and 

theoretical steering vectors above 8 Hz.   

Figure 11  This figure shows how calibrated plane-wave steering vectors vary from a reference 

vector (choosing the Rasvumchorr mine (K2) as the reference).  Symbol size represents 

amplitude difference and color phase difference between an element of a particular mine’s 

steering vector and the corresponding element of the Rasvumchorr steering vector.  The format 

for this plot is the same as that in Figures 7 and 9.  Ten mines and 7 frequencies are depicted. 

Figure 12  This figure portrays the differences among empirical (matched field) steering vectors 

comparable to the plane wave vectors of Figure 11.  Note the very great differences here, 



 

 

increasing with frequency, suggesting much greater potential for differentiating signals among 

the mines. 

Figure 13  This figure shows the increase in resolution obtained with empirical matched field 

steering vectors.  The quantity displayed is the ambiguity function, the inner product between 

steering vectors at each mine and the corresponding reference steering vector at the Rasvumchorr 

mine.  The ambiguity value is rendered as symbol size (area) at the geographic location of each 

mine.  Ambiguity functions for three different types of steering vectors are shown at each of two 

frequencies:  5 and 10 Hz.  The theoretical plane wave function results from steering vectors 

calculated from great circle path azimuths and a fixed phase velocity of 7.8 km/sec.  The 

calibrated plane wave function results from fitting the best plane wave to the data over the 2.5-

12.5 Hz band.  The matched field function has much greater resolution which results from 

steering vectors extracted as the principal eigenvectors of covariance matrices for each mine in 

the two frequency bands. 

Figure 14  Distributions of the matched field processing classification statistic (right) for the 

Olenegorsk (O2) mine population of 52 events under the 10 hypotheses  about originating source 

(indicated at left) separate O2 unambiguously from the other mines.  Frequency distributions for 

the theoretical (great-circle path) plane wave FK classifier (left) are ambiguous.  Distributions 

for the plane wave FK classifier with slowness corrections (middle) show slightly improved 

separation between the two mining groups. 

Figure 15  Classification results for 549 events show that the theoretical plane wave (FK without 

corrections) spectrum (top) is unable to resolve the mines, as expected.  The FK algorithm with 

corrections (middle) largely separates the Olenegorsk group from the Khibiny group, and begins 



 

 

to distinguish individual mines. The matched field method (bottom) separates all mines with a 

high degree of  reliability (98.2%). 



 

 

 

Tables 

Table 1  Number of events at each mine observed by the ARCES, together with distance and 

backazimuth to each mine 

Mine (�) ARCES Distance ARCES Backazimuth Number of explosions (��) 

Kirovogorsk 341 114.3   37 

Olenegorsk 346 112.8   52 

Oktjabrsk 347 114.3   18 

Bauman 349 114.5   35 

Komsomolsk 356 113.4   29 

Kirovsk 393 118.0 114 

Rasvumchorr 400 118.0 108 

Central 403 118.0   63 

Koashva 406 117.5   56 

Norpakh 409 116.6   37 
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